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Abstract
A variety of metal vacuum systems display the celebrated 1/t pressure, namely power-law
dependence on time t , with the exponent close to unity, the origin of which has been a
long-standing controversy. Here we propose a chemisorption model for water adsorbates, based
on the argument for fermion behaviour of water vapour adsorbed on a stainless-steel surface,
and obtain analytically the power-law behaviour of pressure, with an exponent of unity. Further,
the model predicts that the pressure should depend on the temperature T according to T 3/2,
which is indeed confirmed by our experiment. Our results should help elucidate the unique
characteristics of the adsorbed water.

Water is a natural wonder; this makes its unusual behaviour
of great interest, let alone the structure of the water molecule
that helps to explain this behaviour [1]. Unlike other common
liquids, not only does water expand and become less dense
as it cools from 4 to 0 ◦C, it becomes even less dense as it
freezes to ice [2]. Although the uniqueness of water refers
largely to its liquid phase, such uniqueness can also be found
in its adsorbed phase. Water adsorption has been observed
to produce 1/t pressure (i.e. pressure p with a power-law
dependence on time t : p ∼ t−α with α close to unity) in a
tremendous variety of metal vacuum systems [3, 4]. As simple
as the function may seem, scientists have long been baffled
about why the pressure obeys such a power law [5–9]. Despite
60 years of intense effort, however, the nature of their solution
remains obscure. In this communication, we argue that water
vapour, when adsorbed on a stainless-steel surface, behaves
as fermions in two dimensions and, on this basis, propose a
chemisorption model for water adsorbates. Remarkably, there
follows analytically the power-law behaviour of the pressure,
with an exponent α = 1. Further, the model predicts that
the pressure should depend on the temperature T according to
T 3/2. Indeed, this prediction is borne out by our experimental
measurements.

The most direct examination of the adsorption behaviour
of water is to measure the pump-down characteristics of a

system. This experimental work has been performed on an
extreme high vacuum (XHV) chamber shown in figure 1, a
stainless-steel vessel with a thin, dense Cr2O3 film on the inner
surface. This film has very few surface singularities and a
very low specific surface area [10]. Prior to each experimental
run the chamber is heated to about 100 ◦C for about 6 h and
then cooled. At a pressure below 10−8 Torr, deionized water
is admitted through a UHV leak valve into the chamber. As
the adsorption proceeds, the pressure in the chamber decreases
quite slowly after the rapid initial increase, then levels off after
about 24 h, when it approaches its ‘terminal value’. Since the
chemical potential and hence the initial number of adsorbates
must be the same for each run, further adjustments are made
to the terminal pressure. During the run, the temperature of
the vacuum system is regulated to ±0.2 K. Figure 2 shows a
typical pump-down curve for the XHV system with adsorbed
water. Immediately after pump-down starts, most of the gas
which goes into the pumping system is the volume gas. Though
not shown here, the pressure p in the system falls exponentially
with time t . Subsequently, as surface desorption takes over as
the predominant source of the gas load, the fall becomes less
marked and the pressure follows the power law p ∼ t−1, as
indicated in figure 2. It is this power law that makes adsorbed
water deserve special attention. The emerging power law
indicates that the system of adsorption, being far from random,
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Figure 1. Schematic of the metal (stainless-steel) vacuum system
used in this experiment. The test chamber has a volume of about 42 l
and an internal surface of about 10 600 cm2 whereas the diameter of
the pumping orifice placed at the end of a short high vacuum line,
8 cm long and 15 cm diameter, is 0.8 cm. Pressure, which is nitrogen
equivalent, is measured with the extractor gauge (G1). Measurements
are also performed with two capacitance manometer gauges (G2 and
G3); in particular, G3 is used as a transfer standard from 0.05 to
10−5 Torr.

organizes itself to criticality. At this stage the pressure still
decreases, but only slowly, and the system is said to be in the
quasi-steady state [8].

The mathematical description of the desorption process
begins with the pumping equation. We suppose that the pump
evacuates a vacuum vessel of volume V , which has long been
exposed to water, with an effective pumping speed S. At any
instant the system pressure p is governed by the competition
between the rate of gas supply due to desorption and the rate of
depletion due to adsorption on the walls of the vessel as well
as through pumping by the pump. Particle conservation thus
yields

V
dp

dt
= −dN

dt
kT −s A�kT −Sp = −kT

dN

dt
−(R+S)p (1)

at temperature T (with k being Boltzmann’s constant), where
N denotes the total number of adsorbed molecules, s the
sticking probability and A the inner surface area of the vacuum
chamber. According to the kinetic gas theory, the rate � at
which particles, each of mass m, impinge on a surface (per
unit area and time) is given by � = p/

√
2πmkT ; thus

the re-adsorption rate (per unit density) is given by R ≡
s A

√
kT/2πm. Under the quasi-steady-state conditions, where

the change in pressure is very slow, the pressure p and the
sticking probability s may be regarded as effectively constant
during the variation of N . Equation (1) then reduces to

p = − kT

R + S

dN

dt
. (2)

Thus, studying the desorption rate directly yields interesting
information about the pressure and vice versa.

We need to assess the desorption rate. For simplicity, no
gas is assumed to diffuse out of the bulk of the system walls and
adsorbates are considered confined to the (two-dimensional)

Figure 2. Sample set of pump-down curves, displaying the time
evolution of the system pressure on a logarithmic scale. The pressure
follows p(t) ∼ t−α with α = 1. The dashed line represents the
extrapolation to estimate the intercept on the p axis.

surface of the wall. Unfortunately, the details as to how
water molecules are adsorbed on a stainless-steel surface are
not known. According to the traditional view, a few, say ν,
water molecules form a cluster via hydrogen bonding. It is not
clear whether some of the ν molecules should dissociate into
hydrogen atoms (H) and hydroxyl groups (OH) so that local
bonding could occur with individual fragments [11–13]. In any
case, some oxygen atoms are expected to bind to the surface
atoms through hybridization. It then appears reasonable to
assume that only one particle (i.e. a fragment of a few water
molecules and possibly hydroxyl groups) can occupy each
location of the surface, binding through hybridization. The
binding energy for an additional particle is expected to be
substantially smaller, which means that rather higher energy
is involved for additional occupancy; disregarding this results
in the single occupancy condition, which forbids multi-layer
adsorption and may be taken effectively into account by
introducing a hard core to each particle. Accordingly, upon
adsorption, each (fragment) particle, in general consisting of an
even number of fermions (regardless of the presence/absence
of dissociation), may be regarded as a boson with a de facto
hard core taking care of the single occupancy condition. The
total number of those bosons is given by Ñ = N/ν; hereafter
the tilde sign will be omitted for simplicity.

Note that in two dimensions such a boson with a hard
core is equivalent to a fermion in an appropriate gauge field,
as follows [14–16]. In the second quantized representation the
system is described by the boson operators b†

i and bi creating
and annihilating a boson at (surface) site i , respectively.
The single occupancy condition is ni ≡ b†

i bi = 0, 1 or
(b†

i )
2 = b2

i = 0. The Jordan–Wigner transformation then
maps such a boson system into a fermion system in the gauge
field corresponding to the flux per plaquette given by � =
(α/γc)

∑
i ni in units of the flux quantum (i.e. �0 ≡ 1),

where α is an odd integer, γc denotes the coordination number
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and the summation is over γc sites around the plaquette. The
interactions between adsorbate (fragment) particles, which are
neutral, are expected to be weak and negligible compared with
the interactions with the surface. Neglecting the latter as well
gives two-dimensional (2D) free fermions. Conversely, in the
limit of strong interactions with the surface, the system reduces
to 2D tight-binding fermions. Since the two opposite limiting
cases give mostly the same results, we may take the system to
be just free fermions for simplicity4. We are thus left with 2D
free fermions in a gauge field, which are known to form Landau
levels. The mean occupation number is then given by the Fermi
function f (εn) = g[eβ(εn−μ) + 1]−1 with β ≡ 1/kT , where g
denotes the degeneracy factor of each level, εn = (2n+1)ε0 the
energy at the nth Landau level and μ the ‘effective’ chemical
potential of an adsorbate particle with the binding energy εb

included. (Thus the ‘bare’ chemical potential is given by
μb = μ − εb.)

According to equation (2), the pressure depends on the
desorption rate. As the vessel is evacuated by pumping, some
adsorbate particles tend to desorb, escaping predominantly
via thermal activation at room temperature. For a given
energy, the number of adsorbate particles reduces with time,
proportionally to e−t/τ with the characteristic time τ measuring
the average lifetime on the surface. It depends on the energy of
the particle. In the case of thermal activation, the activation
probability is proportional to the Boltzmann factor e−β�U ,
where �U is the energy barrier. For a particle with energy εn ,
it is given by �U = εb −εn. Accordingly, the average lifetime
on the surface, which is inversely proportional to the activation
probability, takes the form τ (εn) = τ0eβ�U = τ0eβ(εb−εn ),
where τ0 is a characteristic ‘attempt time’, usually of the order
of an inverse phonon frequency for many activated processes
in solids.

The total number of adsorbate particles at time t is then
given by

N =
∞∑

n=0

e−t/τ(εn ) f (εn) = g
∞∑

n=0

e−t/τ(εn )

eβ(εn−μ) + 1
, (3a)

which, via the Euler–Maclaurin formula, is expanded as

N = D
∫ ∞

0
dε

e−t/τ(ε)

eβ(ε−μ) + 1
− βε2

0 D

6

e−t/τ(0)

1 + e−βμ

×
(

t

τ0
e−βεb + 1

eβμ + 1
+ · · ·

)

. (3b)

Note that the ground-state energy ε0 and the degeneracy factor
g are related via g = 2ε0 D, where D = νm A/2π h̄2 is the
(constant) density of states in two dimensions. Taking the
derivative with respect to time gives the desorption rate

−dN

dt
= D

∫ ∞

0

dε

τ(ε)

e−t/τ(ε)

eβ(ε−μ) + 1
− βε2

0 D

6τ0

e−βεb−t/τ(0)

1 + e−βμ

×
(

t

τ0
e−βεb − 1

1 + e−βμ
+ · · ·

)

. (4)

4 To be precise, the interplay of the surface potential and the gauge field leads
the system to be described by Harper’s equation in both the two limits, with
the frustration parameters reciprocal to each other. As a result, some of the
degeneracy of each level is lifted, if the flux � is not an integer, yielding
sublevels. This, however, does not alter the subsequent analysis based on the
continuum approach.

Figure 3. Pump-down curves at various temperatures. The initial
number of adsorbates and hence the chemical potential (related by
equation (3a) at t = 0) should be the same for each experimental
run. We choose the numerical value of the (bare) chemical potential
μb = −0.677 eV and determine the initial pressure according to:
p = (mkT/2π h̄2)3/2kT eμb/kT . Note that pumping performance
tends to degrade with temperature, as all thermally activated
processes are accelerated. The inset reveals that this shows up as a
shift to the right of the pump-down curves.

Since the binding energy is of the order of 1 eV, the
(effective) chemical potential is much larger than the thermal
energy kT at room temperature, i.e. βμ � 1. Then the Fermi
function on the right-hand side of equation (4) reduces to the
step function: f (ε) = g[eβ(ε−μ) + 1]−1 ≈ gθ(μ−ε). On the
other hand, since the factor e−βεb 	 1, the second term on the
right-hand side of equation (4) is negligible compared with the
first term. Thus equation (4) becomes

−dN

dt
≈ D

∫ μ

0

dε

τ(ε)
e−t/τ(ε) = DkT

∫ τ(0)

τ (μ)

dτ

τ 2
e−t/τ . (5)

Typically, we have τ0 ∼ 10−13 s; thus τ (μ) ≡ τ0e−β(μ−εb)

and τ (0) ≡ τ0eβεb are sufficiently smaller and larger than the
observation time in figure 2, respectively. The lower and upper
limits of the integral in equation (5) can then be replaced by 0
and ∞ with negligible error, leading to the desorption rate

−dN

dt
= DkT

t
. (6)

Substituting equation (6) into equation (2), we obtain

p = − νkT

R + S

dN

dt
= νDk2T 2

(R + S)t
≡ γ t−1, (7)

which is the desired 1/t pressure.
We now make a quantitative test of our assumptions by

probing the temperature dependence of the proportionality
coefficient γ . This temperature dependence has been
measured for the pump-down of adsorbed water. At different
temperatures, equation (7) gives a group of parallel straight
lines on the log–log plot, as shown in figure 3. The
conductance, and hence the pumping speed for molecular
flow of an orifice, is proportional to the mean speed of gas

3
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Figure 4. Proportionality coefficient γ in equation (8) versus
temperature T , presented in the logarithmic scale. To estimate γ , we
have extrapolated the pump-down curve, as shown by the dashed line
in figure 2. Each data point consists of five independent
measurements and the error bar indicates standard deviation. The
solid line represents the least-squares fit of the data, with a slope
1.515.

molecules. Namely, S as well as R is proportional to
√

T ; thus
γ takes the form

γ = νDk2T 2

R + S
= CT 3/2 (8)

with constant C or

log γ = log C + 3
2 log T, (9)

which indicates a linear dependence of log γ on log T with
slope 3/2. Figure 4 indeed reveals a linear relation between the
two, with the slope estimated as 1.515 ± 0.198. Such excellent
agreement with experiment strongly supports the validity of
our analytical approach, particularly the argument for effective
fermion behaviour.

As a further check of equation (7), the adsorption isotherm
is computed and compared with the empirical isotherm in
the existing literature. Integrating equation (6) and using
equation (7) to eliminate t , we obtain N as a function of p
and T :

N = DkT ln

(
R + S

νDk2T 2
p

)

(10)

up to an additive constant. At a set temperature equation (10)
essentially describes the Temkin isotherm between the number
of adsorbate particles and the pressure, which is known to
adequately reproduce the experimental 1/t behaviour over
restricted pressure ranges [8, 9, 17–19]. Further, a close
look at the proportionality constant shows that the Temkin
isotherm also predicts the T 3/2 dependence. Note, however,
that the Temkin isotherm is obtained by assuming without
substantiation a constant density of sites over a wide range of
energy [9]. It is remarkable that such a constant distribution
in fact corresponds to the Fermi function here. In this respect,
our analytical approach also provides a theoretical basis for the
empirically obtained isotherm.

The power-law behaviour of the 1/t pressure indicates
that a characteristic timescale does not exist. This can be
seen by examining the distribution g(τ ) of the average surface
lifetime τ , which depends on the energy ε. It is related to the
energy distribution, which is just the Fermi function f (ε), via
g(τ ) = f (ε)|dτ/dε|−1. This yields

g(τ ) ∝ τ−1 (11)

in the rather wide range τ (μ) � τ � τ (0). Thus the lifetime
distribution in adsorption is scale-free, following a power law
with exponent unity. The number of adsorbates with given
surface lifetime is inversely proportional to the lifetime. Such
an absence of a characteristic lifetime in turn gives rise to the
power-law behaviour of the pressure.

In this communication, we have probed both experimen-
tally and theoretically the 1/t pressure, observed frequently
in systems with adsorbed water. The theoretical focus on a
strongly bonded surface monolayer allows us to regard adsor-
bates as bosons with de facto hard cores, which transform into
fermions in two dimensions. The 1/t pressure, as well as the
power-law distribution of surface lifetimes, has then been ob-
tained analytically, as a consequence of the fermion behaviour
of adsorbed water. Accurate measurements have been carried
out with the XHV system to confirm the validity of this the-
oretical analysis. In particular, the T 3/2 dependence observed
in the measurement has been shown to be fully consistent with
the prediction of the theoretical analysis. While the structure
of water adsorbed on a well-defined metal surface remains a
subject of debate [11–13], our results suggest that water, upon
adsorption on a stainless-steel surface, exhibits fermion be-
haviour. This gives rise to criticality without a characteristic
timescale, which provides an explanation of the power-law be-
haviour with exponent unity. Thus, like liquid and solid water,
adsorbed water also exhibits unique characteristics. Based on
the theoretical analysis, we expect similar adsorption charac-
teristics of other molecular systems as well: a few molecules
form a small network and only one of the resulting ‘particles’
can occupy a site, binding rather strongly, e.g. through hy-
bridization. The adsorption system controlled by the vapour
of appropriate molecules should be prepared carefully in XHV,
with water vapour removed thoroughly. It would be of interest
to build such a system and examine adsorption and correspond-
ing pressure behaviours.
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